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Abstract. The generalized Laguerre polynomials Łβ
α (x) of arbitrary orderα ∈ R have been

defined by the author (El-Sayed 1997Math. Sci. Res. Hot-line1 7–14, 1999 to appear). In the latter
reference it is proved that they are continuous as functions ofα, α ∈ R, and some other properties
that generalize (interpolate) those of the classical Laguerre polynomialsL

β
n (x), n = 1, 2, . . . have

been proved. Here we prove that Łβ
α (x), α ∈ R are orthogonal inL2(0,∞) and are particular

solutions of the differential equation
xD2u(x) + (1 +β − x)Du(x) + αu(x) = 0

generalizing the one forLβn (x), n = 1, 2, . . . . Also some applications in quantum mechanics are
discussed.

1. Introduction

Let L1 = L1[a, b], 0 6 a < b < ∞ be the class of Lebesgue integrable functions on the
interval [a, b].

Definition 1.1. Let f (x) ∈ L1, β ∈ R+. The Riemann–Liouville fractional (arbitrary) order
integral of the functionf (x) of orderβ is defined by (see [18, 19, 21])

Iβa f (x) =
∫ x

a

(x − s)β−1

0(β)
f (s) ds (1)

and whena = 0, we can writeIβ0 f (x) = f (x)∗φβ(x), whereφβ(x) = xβ−1/0(β), for x > 0,
φβ(x) = 0, for x 6 0, andφβ → δ(x) (the delta function), asβ → 0 (see [15]), and hence
I
β

0 f (x)→ f (x), asβ → 0.

Now the following lemma can be easily proved.

Lemma 1.1. Letβ andγ ∈ R+. Then we have

(a) Iβa : L1→ L1, and iff (x) ∈ L1, thenI γa I
β
a f (x) = I γ+β

a f (x).
(b) limβ→n I

β
a f (x) = Ina f (x), n = 1, 2, 3, . . . uniformly.

Example 1. Letα ∈ (0, 1] andν > −1, then we have

Iαa (x − a)ν =
0(1 + ν)

0(1 + ν + α)
(x − a)ν+α.
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Also

lim
α→1

Iαa (x − a)ν =
(x − a)ν+1

ν + 1
=
∫ t

a

(s − a)ν ds

and

lim
α→0

Iαa (x − a)ν = (x − a)ν.
For the fractional order derivative we have mainly the following two definitions.

Definition 1.2. The Riemann–Liouville fractional derivative of orderα ∈ (0, 1) of f (x) is
given by (see [18, 19, 21])

dαf (x)

dxα
= d

dx
I 1−α
a f (x). (2)

Definition 1.3. The (Caputo [1] and El-Sayed approach [2–14, 19]) fractional derivativeDα

of orderα ∈ (0, 1] of the absolutely continuous functionf (x) is given by

Dα
af (x) = I 1−α

a Df (x) D = d

dx
. (3)

This definition is more convenient in many applications in physics, engineering and applied
sciences. Moreover, it generalizes (interpolates) the definition of the integer-order derivative.
The following lemma can be directly proved.

Lemma 1.2. Letα ∈ (0, 1]. If f (x) is absolutely continuous on[a, b], then

(a) Dα
af (x) = dαf (x)/dxα + [(x − a)−α/0(1− α)]f (a).

(b) limα→1D
α
af (x) = Df (x) 6= limα→1 dαf (x)/dxα.

(c) If f (x) = k, k is a constant, thenDα
a k = 0, butdαk/dxα 6= 0.

Example 2. Letα ∈ (0, 1] andν > 0, then we have

Dα
a (x − a)ν =

0(1 + ν)

0(1 + ν − α)(x − a)
ν−α

and

lim
α→1

Dα
a (x − a)ν = ν(x − a)ν−1 = d

dx
(x − a)ν.

Also

lim
α→0

Dα
a (x − a)ν = (x − a)ν.

The fractional derivativeDα of orderα ∈ (n− 1, n] of the functionf (x) is given by

Dα
af (x) = In−αa Dnf (x) D = d

dx
.

Definition 1.4. Let α ∈ (n − 1, n], n = 1, 2, . . . . The generalized Laguerre polynomials
(generalized Rodrigues formula)Łβα(x) of orderα are defined by (see [13])

Łβα(x) =
x−βex

0(1 +α)
Dαe−xxα+β β > −1 (4)

and the generalized Laguerre polynomialsŁβ−α(x) of order−α are defined by

Łβ−α(x) =
x−βex

0(1 +α)
Iαe−xx−α+β α + β > −1. (5)
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In [13], it is proved that{Łβα(x), α ∈ R} are continuous as functions ofα, α ∈ R and

lim
α→n+

Łβα(x) = lim
α→n−

Łβα(x) = Lβn(x) n = 1, 2, 3, . . . (6)

the confluent hypergeometric representation of Łβ
α(x), α ∈ R has been given and some

other properties that generalize (interpolate) those of the classical Laguerre polynomials
L
β
n(x), n = 1, 2, . . . have been proved.

Here we prove that{Łβα(x), α ∈ R} are orthogonal inL2(0,∞) with a weight function
e−x/2xβ/2. Further, we prove that∫ ∞

0
e−xxβ{Łβα(x)}2 dx <∞

and Łβα(x) are particular solutions of the differential equation

x
d2

dx2
u(x) + (1 +β − x) d

dx
u(x) + αu(x) = 0.

Also some applications in quantum mechanics are discussed.

2. Continuation properties

In [13], it is proved that (see corollary 4.1), ifα ∈ (n− 1, n], n = 1, 2, 3, . . . , then

lim
α→nDŁβα(x) = DLβn(x).

In the same way we can prove the following two lemmas.

Lemma 2.1. Letα ∈ (n− 1, n], n = 1, 2, . . . andβ > −1, then we have

lim
α→nD

mŁβα(x) = DmLβn(x) m = 0, 1, 2, . . . . (7)

Lemma 2.2. Letα ∈ (n− 1, n], n = 1, 2, . . . andβ > α − 1, then we have

lim
α→nD

mŁβ−α(x) = DmL
β
−n(x) m = 0, 1, 2, . . . . (8)

3. The differential equation

Let α ∈ (n− 1, n], n = 1, 2, 3, . . . , andβ ∈ R. Putting

Yβα (x) =
1

0(1 +α + β)
Dαe−xxα+β β > −1

then we have

Theorem 3.1.The functionYβα (x) satisfies the following recurrence relations:

d

dx
Y βα (x) =

d

dx
Y
β

α−1(x)− Yβα (x) (9)

(α + β)Y βα (x) = x
d

dx
Y
β

α−1(x) + αYβα−1(x) (10)

(1 +α + β)Y βα+1(x) = x
d

dx
Y βα (x) + (1 +α)Y βα (x). (11)
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Proof. From the definition of the functionYβα (x) and the properties of the fractional derivative
we obtain
d

dx
Y βα (x) =

1

0(1 +α + β)

d

dx
In−αDn−1

[−e−xxα+β + (α + β) e−xxα+β−1
]

= −1

0(1 +α + β)
Dαe−xxα+β +

α + β

0(1 +α + β)

d

dx
Dα−1e−xxα−1+β (12)

from which the first result follows.
From the convergence of the power-series expansion of e−xxα+β and the properties of the

fractional derivative we obtain

Yβα (x) =
∞∑
m=0

(−1)m0(1 +m + α + β)

m!0(1 +α + β)0(1 +m + β)
xm+β (13)

from which we can prove (by direct substitution) the second and third results. �

Theorem 3.2.The functionYβα (x) is a particular solution of the differential equation

x
d2

dx2
u(x) + (1 +x − β) d

dx
u(x) + (1 +α) u(x) = 0. (14)

Proof. Substituting from (9) into (10) we obtain

(α + β)Y βα (x) = x
{

d

dx
Y βα (x) + Yβα (x)

}
+ αYβα−1(x). (15)

By differentiating (15) we obtain

(α + β)
d

dx
Y βα (x)−

d

dx
x

{
d

dx
Y βα (x) + Yβα (x)

}
= α d

dx
Y
β

α−1(x). (16)

Again by substitution from (9) into the right-hand side of (16) we obtain

x
d2

dx2
Yβα (x) + (1 +x − β) d

dx
Y βα (x) + (1 +α)Y βα (x) = 0. (17)

�

Theorem 3.3.The generalized Laguerre polynomialsŁβα(x), α ∈ R are particular solutions
of the differential equation

x
d2

dx2
u(x) + (1 +β − x) d

dx
u(x) + αu(x) = 0. (18)

Proof. First letα ∈ (n− 1, n], n = 1, 2, . . . . Since

Yβα (x) =
0(1 +α)

0(1 +α + β)
xβe−xŁβα(x) (19)

then substituting from (19) into (17) we obtain

x
d2

dx2
Łβα(x) + (1 +β − x) d

dx
Łβα(x) + αŁβα(x) = 0. (20)

Secondly, since (see [13])

Łβ−α(x) =
0(1 +α + β)

0(1 +α)0(1 +β)
1F1(α, 1 +β; x) (21)

then by the direct calculation we obtain

x
d2

dx2
Łβ−α(x) + (1 +β − x) d

dx
Łβ−α(x)− αŁβ−α(x) = 0 (22)

which completes the proof. �
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4. Orthogonality property

Theorem 4.1.For any two real numbersα1 6= α2 we have∫ ∞
0

e−xxβ Łβα1
(x) Łβα2

(x) dx = 0. (23)

Proof. Let uα(x) = e−x/2xβ/2Łβα(x), α ∈ R+, then by direct calculation we can prove that

x
d2

dx2
uα(x) +

d

dx
uα(x) +

(
α − x

4
+

1 +β

2
− β

2

4x

)
uα(x) = 0. (24)

Then for any two positive real numbersα1 6= α2 we have

d

dx

(
x

d

dx
uα1(x)

)
+

(
α1− x

4
+

1 +β

2
− β

2

4x

)
uα1(x) = 0 (25)

d

dx

(
x

d

dx
uα2(x)

)
+

(
α2 − x

4
+

1 +β

2
− β

2

4x

)
uα2(x) = 0. (26)

By multiplying (25) byuα2(x) and (26) byuα1(x), subtracting the resulting equations and
integrating from 0 to∞ we obtain∫ ∞

0
uα1(x) uα2(x) dx = 0 (27)

from which we obtain (23). �

Also, for any two negative real numbersα1 6= α2, lettingu−α(x) = e−x/2xβ/2Łβ−α(x), we
can then prove that

x
d2

dx2
u−α(x) +

d

dx
u−α(x) +

(
−α − x

4
+

1 +β

2
− β

2

4x

)
uα(x) = 0 (28)

and ∫ ∞
0

e−xxβ Łβ−α1
(x) Łβ−α2

(x) dx = 0. (29)

Theorem 4.2.For anyα ∈ R, β > −1, we have∫ ∞
0

e−xxβ
{
Łβα(x)

}2
dx <∞. (30)

Proof. Let α > 0, and adding (10) and (11) we obtain

(1 +α + β)Y βα+1(x)− (1 + 2α + β)Y βα (x) = x
(

d

dx

{
Yβα (x)− Yβα−1(x)

})− αYβα−1(x) (31)

substituting from (9) we obtain

(1 +α + β)Y βα+1(x)− (1 + 2α + β − x)Y βα (x) + αYβα−1(x) = 0. (32)

Multiplying (32) by0(2 +α + β)/0(1 +α), then from the definition ofYβα (x) and Łβα(x) we
can obtain

(1 +α) Łβα+1(x)− (1 + 2α + β − x) Łβα(x) + (α + β) Łβα−1(x) = 0 (33)
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which generalize the known formula forLβn(x) (see [16]),

(1 +n)Lβn+1(x)− (1 + 2n + β − x)Lβn(x) + (n + β)Lβn−1(x) = 0. (34)

Write (34) forα − 1 instead ofα, we obtain

αŁβα(x)− (1 + 2α − 2 +β − x) Łβα−1(x) + (α − 1 +β) Łβα−2(x) = 0. (35)

Now multiplying (33) by Łβα−1(x) and (35) by Łβα(x) and subtracting the two results we obtain

(1 +α) Łβα+1(x) Łβα−1(x)− α
(
Łβα(x)

)2 − (1 +α + β) Łβα−1(x) Łβα(x)

+(α + β)
(
Łβα−1(x)

)2 = 0. (36)

Multiplying by e−xxβ and integrating from 0 to∞ we obtain∫ ∞
0

e−xxβ
(
Łβα(x)

)2
dx = (α + β)

α

∫ ∞
0

e−xxβ
(
Łβα−1(x)

)2
dx (37)

from which we obtain∫ ∞
0

e−xxβ
(
Łβα(x)

)2
dx = (α + β)(α + β − 1) . . . (α + β − n + 2)

α(α − 1) . . . (α − n + 2)

×
∫ ∞

0
e−xxβ

(
Łβα−n+1(x)

)2
dx. (38)

Sinceα−n+1 ∈ (0, 1], letγ = (α−n+1] then the use of the relation (see [13], equation (39))

Łβγ (x) =
0(2− γ )(γ + β)

0(1 +γ )
Łβ−(1−γ )(x)−

0(2− γ )x
0(1 +γ )

Łβ+1
−(1−γ )(x) (39)

and the hypergeometric representation of Łβ
−γ (x) we can obtain

Łβγ (x) <
0(2− γ )(γ + β)

0(1 +γ )
Łβ−(1−γ )(x) =

0(1 +γ + β)

0(1 +γ )0(1 +β)
1F1(1− γ, 1 +β; x).

Now since (see [19]) forx ∈ [0, N ], N <∞, 1F1(1−γ, 1 +β; x) is bounded,|1F1(1−γ, 1 +
β; x)| < M, then∫ ∞

0
e−xxβ

(
Łβα−n+1(x)

)2
dx <

0(1 +γ + β)

0(1 +γ )0(1 +β)
M20(1 +β). (40)

Hence,∫ ∞
0

e−xxβ
(
Łβα(x)

)2
dx < M2 (α + β)(α + β − 1) . . . (α + β − n + 2)

α(α − 1) . . . (α − n + 2)

0(1 +γ + β)

0(1 +γ )
(41)

and ∫ ∞
0

e−xxβ
(
Łβα(x)

)2
dx < M20(α + β)

0(α)
<∞. (42)

�
Also we have the following corollary which will be needed in the next paragraph.

Corollary 4.1. For anyα ∈ R, β > −1 we have∫ ∞
0

e−xxβ+1
{
Łβα(x)

}2
dx <∞. (43)
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Proof. Multiplying (33) by Łβα(x) we obtain

(1 +α) Łβα(x) Łβα+1(x)− (1 + 2α + β)
(
Łβα(x)

)2
+ x
(
Łβα(x)

)2
+ (α + β) Łβα(x) Łβα−1(x) = 0.

(44)

By multiplying (44) by e−xxβ , integrating from 0 to∞ and using (23) we obtain

0− (1 + 2α + β)
∫ ∞

0
e−xxβ

(
Łβα(x)

)2
dx +

∫ ∞
0

e−xxβ+1
(
Łβα(x)

)2
+ 0= 0 (45)

from which we obtain∫ ∞
0

e−xxβ+1
(
Łβα(x)

)2 = (1 + 2α + β)
∫ ∞

0
e−xxβ

(
Łβα(x)

)2
dx <∞. (46)

�

5. Application

In quantum mechanics; the motion of a particle of massµ in a field of central force whose
potential isV (r), and total energyE, is described by the Schrödinger equation for the
wavefunctionψ

− h
2

2µ
∇2ψ + V (r)ψ = Eψ (47)

(h is Planck’s constant divided by 2π ). The solution in the spherical polar coordinates
ψ(r, θ, φ) must satisfy the following conditions:

(a) ψ(r, θ, φ) = ψ(r, θ, φ + 2π)
(b) ψ is bounded for 06 θ 6 π, 06 r <∞ and 06 φ < 2π
(c) ψ → 0 asr →∞
(d) ψ is finite for r → 0
(e)

∫∫∫ |ψ |2r2 sinθ dθ dφ = 1.

The dependence onθ andφ which satisfies the above conditions can be written in the form

ψnlm(r, θ, φ) = Rnl(2ar)P |m|l (cosθ) eimφ (48)

with |m| 6 l, l = 0, 1, 2, . . . anda =
√
−2µE/h2 for negative energy.

For the hydrogen atom (see [17]) with the potentialV (r) equal to−e2/r, we find thatRnl
is proportional to e−x/2xlL2l+1

n−l−1(x), n > l + 1 where

n = e2

h

√
µ

−2E
H⇒ En = − µe4

h2(2n2)

and the condition (e) amounts to (compare with (46))∫ ∞
0

e−xx2l+2
(
L2l+1
n−l−1(x)

)2
dx = 2n[(n + l + 1)!] 3

(n− l)! <∞. (49)

Now we can say that the new definition of the Laguerre polynomials, the generalized Laguerre
polynomials (generalized Rodrigues formula) of arbitrary (fractional) orders, enhances the
field of the definition of the solutions for the hydrogen atom. This would add a continuous
spectrum in between the discrete spectrum for the energiesEn. Further, this would open the
question of the completeness of the solutions.
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