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Abstract. The generalized Laguerre polynomialg(bc) of arbitrary ordere € R have been
defined by the author (El-Sayed 199ath. Sci. Res. Hot-ling 7-14, 1999 to appear). In the latter
reference it is proved that they are continuous as functions @fe R, and some other properties
that generalize (interpolate) those of the classical Laguerre polynobﬁais, n=12, ... have
been proved. Here we prove th£ &), « € R are orthogonal in.»(0, co) and are particular
solutions of the differential equation

xDzu(x) +(1+B8 —x)Du(x)+au(x) =0
generalizing the one fomff(x), n=12.... Also some applications in quantum mechanics are
discussed.

1. Introduction

Let L1 = Li[a,b],0 < a < b < oo be the class of Lebesgue integrable functions on the
interval [a, b].

Definition 1.1. Let f(x) € L1, B € R*. The Riemann-Liouville fractional (arbitrary) order
integral of the functionf (x) of orderg is defined by (see [18, 19, 21])

X _ \B-1
itrw = [ S @

and whem: = 0, we can writel(’ff(x) = f(x)*pp(x), wherepg(x) = xP~1/T'(B), forx > 0,
¢p(x) =0, forx < 0, and¢g — §(x) (the delta function), ag — O (see [15]), and hence
1l f(x) - f(x),asp — 0.

Now the following lemma can be easily proved.
Lemma1l.l.LetB8 andy € R*. Then we have

@) 1 : Ly — Ly, andif f(x) € Ly, thenll 1? f(x) = I'*P f(x).

(b) limg_, IZ f(x) = I" f(x),n = 1,2,3, ... uniformly. "
Example 1. Letw € (0, 1] andv > —1, then we have

]a( )U _ F(1+U) ( )v+(x

a X a = F(l PR O[) X a .
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Also
) o . (x _ a)v+1 _ t )
lanlIa(x—a) = 1 —/a (s —a)’ds

and
lim I (x —a)’ = (x —a)".
a—0
For the fractional order derivative we have mainly the following two definitions.

Definition 1.2. The Riemann-Liouville fractional derivative of ordere (0, 1) of f(x) is
given by (see [18, 19, 21])
d*f(x)  d

gl
dx”‘ - d.x Ia f(x) (2)

Definition 1.3. The (Caputo [1] and El-Sayed approach [2—-14, 19]) fractional derivafixe
of ordera € (0, 1] of the absolutely continuous functigiix) is given by

DYf(x) = I} *Df (x) D= E. (3)
dx

This definition is more convenient in many applications in physics, engineering and applied
sciences. Moreover, it generalizes (interpolates) the definition of the integer-order derivative.
The following lemma can be directly proved.

Lemma 1.2. Leta € (0, 1]. If f(x) is absolutely continuous dm, b], then

(@) DFf(x) =df (x)/dx* + [(x —a)™*/T (1 — )] f(a).
(b) limy_.1 D f(x) = Df (x) # limqy_1d*f (x)/dx®.

(c) If f(x) =k, k is a constant, the®?k = 0, butd*k/dx* # 0. ]
Example 2. Leta € (0, 1] andv > 0, then we have
D%(x —a)’ = M(x —a)’'™®
4 rd+v-—oa)
and

H o v v=1 d v
lim DY(x —a)’ =v(x —a)’ "= —(x —a)’.
a—1 dx

Also
|imO Dj(x —a)’ =(x —a)’.

The fractional derivativeD* of ordera € (n — 1, n] of the functionf (x) is given by
d
DSf(x)=1""D"f(x) D=—.
dx
Definition 1.4. Leta € (n — 1,n],n = 1,2,.... The generalized Laguerre polynomials
(generalized Rodrigues formule) (x) of order« are defined by (see [13])
xPer
r'(l+a)

Lx) = D¥e* x«*P g>—-1 4)

and the generalized Laguerre polynomihl%a (x) of order —« are defined by
xPer

B _
= rivm

19e " x P at+p>-—1 (5)
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In [13], itis proved thaft? (x), « € R} are continuous as functionsef« € R and

lim £0(x) = lim £f(x) = LE(x) n=123,... (6)
the confluent hypergeometric representation §fx),« € R has been given and some
other properties that generalize (interpolate) those of the classical Laguerre polynomials
L?(x),n =1,2, ... have been proved.

Here we prove thagt f (x), « € R} are orthogonal in.»(0, co) with a weight function
e */?2xh/2, Further, we prove that

/ e_’“xﬂ{’r_g(x)}2 dx <
0

and £ (x) are particular solutions of the differential equation

¢ +(1+ d + =0
xﬁu(x) ( ,B—x)au(x) au(x) =0.

Also some applications in quantum mechanics are discussed.

2. Continuation properties
In [13], itis proved that (see corollary 4.1),dfe (n — 1,n],n =1,2,3,..., then
lim DLf(x) = DL?(x).

a—n

In the same way we can prove the following two lemmas.
Lemma2.l.Lete € (n—1,n],n=12,...andB > —1, then we have

lim D™t (x) = D"LP (x) m=0,12,.... (7

a—n

Lemma2.2.leta € (m —1,n],n=1,2,...andB > a — 1, then we have

lim D"? ,(x) = D"L?  (x) m=0,12,.... (8)

a—n

3. The differential equation

Letae e m—1,n],n=1,2,3,..., andB € R. Putting

1

—Dae—x 0(+,5 _1
Td+a+p) ! e

Y(x) =

then we have

Theorem 3.1. The functiony’ (x) satisfies the following recurrence relations:

d d

—vB _ —yh _vB

oI Y)(x) = oI Y, ,(x) =Yl (x) 9)
(@+pYl(x) = Pl YP jx) +ar? (v (10)

dx
A+a+ )Yy (x) = x%Yf (x) + L+ Y/ (x). (11)
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Proof. From the definition of the functioR’ (x) and the properties of the fractional derivative
we obtain

d 1 d
_Y/S — _In—otDn—l _axatf + + —x a+f—1
dx a(x) F(1+0[+,8) dx [ e 'x (xt+pB)e*x ]
—1 — +B at+p d —1.- —1+
EE—— b L - SR — D x a—1+8 12
ri+a+p - " "TA+tatpa . °°* (12)

from which the first result follows.
From the convergence of the power-series expansion‘af¢? and the properties of the
fractional derivative we obtain

o (D"T(Q+m+a+p)
YP(x) = mp 1
a (%) mZ:;)m!F(1+a+,B)F(1+m+,3)x (13)
from which we can prove (by direct substitution) the second and third results. a

Theorem 3.2.The functionr’ (x) is a particular solution of the differential equation

2
xd—zu(x)+(1 +x —ﬂ)iu(x)+(l +a)u(x) =0. (14)
dx dx
Proof. Substituting from (9) into (10) we obtain
(@+BY(x) = x{din(x) +YP (x)} +a¥!  (x). (15)
X

By differentiating (15) we obtain

d d d d
2 yBie) — — 1 ZyB p 2 yp
(x+B) o Y (x) dxx{ o Yy (x)+Y) (x)} adx Y, 1(x). (16)
Again by substitution from (9) into the right-hand side of (16) we obtain
2
xd—Yf(x)+(1+x—,B)iYo‘f(x)+(1+a)Yf(x):0. (17)
dx2 dx

O

Theorem 3.3.The generalized Laguerre polynomi&lé(x), « € R are particular solutions
of the differential equation

d? d
x—ux)+QA+p —x)—u(x) +aulx) =0. (18)
dx? dx
Proof. Firstleta € m —1,n],n =1,2,.... Since
I'l+a) _
Yh(x) = ———LxPe L’ 1
& () Fl+rarp) e "th(x) (19)
then substituting from (19) into (17) we obtain
2
xd—L;f(x) +(1+8 —x)il'_f(x) +akf(x) =0. (20)
dx? dx
Secondly, since (see [13])
) = OB 14 i) (21)

FA+eI'(1+p)
then by the direct calculation we obtain
d? d
x—tf )+ @+p—x)—tf ,(x)—at? ,(x) =0 (22)
dx2 dx
which completes the proof. |
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4. Orthogonality property

Theorem 4.1. For any two real numbera; # «, we have

/ e x Ll (ol (vdr =0 (23)
0
Proof. Letu, (x) = e*/2xP/2L#(x), & € R*, then by direct calculation we can prove that
d? d x 1+8 B
d zua(x) d ua(x)+<oz— Z+ 2 4x)ua(x) (24)
Then for any two positive real numbers # o, we have
d d x 1+
a <xaual(x)> + (0{1 — Z + 2'3 ﬁx) Ug, (X) = (25)
d d x 1+
a(xauaz(x)> + (052 ~2 + 2'3 fx) Ug,(X) = (26)

By multiplying (25) byu,,(x) and (26) byu,, (x), subtracting the resulting equations and
integrating from O taxo we obtain

/ Uy (1)t () i = O (27)

0

from which we obtain (23). O
Also, for any two negative real numbers # o>, lettingu _, (x) = e*/2x#/2%? (x), we

can then prove that

2
ddzu—a(x) d(iu—tx(x)"' <—(X— % 1;ﬂ ﬁx)ua(x) =0 (28)
and
f el (ol (nde=0. (29)
0

Theorem 4.2.For anya € R, 8 > —1, we have

/ e x? {Lg(x)}zdx < 00. (30)
0
Proof. Letae > 0, and adding (10) and (11) we obtain

A+a+B)Yl () — A+ + Y (x) = x(dd

{Yl(x) - 1(x)}>—ay L) (31)

substituting from (9) we obtain
Q+a+B)Yl () —Q+2u+—0)YPx) +ar’ (x)=0. (32)

Multiplying (32) by I'(2 +« + 8)/ ' (1 +«), then from the definition of# (x) and t£ (x) we
can obtain

A+l ) —Q+n+g -0l +@+pL: [ (x)=0 (33)
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which generalize the known formula faf (x) (see [16]),

A+n)Ll () — A+ 2+ B —x)LE(x) +(n+ L’ _(x) =0. (34)
Write (34) fora — 1 instead ofr, we obtain

kP ) — A+ -2+ -0t () +@—-1+pL? ,x)=0. (35)
Now multiplying (33) by tﬁfl(x) and (35) by # (x) and subtracting the two results we obtain
A+l oLl - a(’r_g(x))z —A+a+pL? L)

Ha+ B)(Lh_,n)* =0, (36)
Multiplying by e~*x# and integrating from 0 teo we obtain
/ e x? (L (x)*d _le ’3) / e xP (L] 1(x))2dx (37)
0

from which we obtain

/ooe‘)‘xﬂ(tg(x))zdx: (a+p)a+B—1)...(a+B—n+2)
0 al@—1) ... (0 —n+2

x/ e_xxﬂ(tg_nﬂ(x))zdx. (38)
0
Sincea —n+1 € (0, 1], lety = (e —n+1]thenthe use of the relation (see [13], equation (39))
Fr2—y)(y+ /3) 22— V)x +
L (x) = TTa+y /i(l X)) — T+ E(i @) (39)

and the hypergeometric representation 6;‘,&) we can obtain

F2—-y)y+p) L f . I'A+y+p) B )

T(l+y) ,(1 y)( x) = F(1+)/)F(1+ﬁ)lF1(1 v, 1+8;x).
Now since (see [19]) far € [0, N], N < o0, 1F1(1—y,1+8; x)isbounded|; F;(1—y, 1+
B; x)| < M, then

L)) <

NP 2 FA+y+p) 5
/o e xP (b)) dy < —F(1+y)F(1+,3)M r@+g). (40)
Hence,
Bl B2 y@+B)a+p—1)...(a+B—n+2)T(L+y+p)
/o el (k) dr < M wa—1. @-n+2 Td+y) (41)
and
fooo e_xxﬁ(Lg(X))zdx < MZF(IOf(;)ﬁ) < o0. (42)
|

Also we have the following corollary which will be needed in the next paragraph.

Corollary 4.1. For anyx € R, 8 > —1we have

f e_xxﬁﬂ{l'_g(x)}zdx < 00. (43)
0
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Proof. Multiplying (33) by £#(x) we obtain

A+t ) — A+ 2+ B (L) +x (L) + @+ HLEL,_ () =0.
(44)

By multiplying (44) by e*x#, integrating from 0 tao and using (23) we obtain

0—(L+2+p) / e (k) e + / e () +0=0 (45)
0 0
from which we obtain
foo e_"x"%l(’r_g()c))2 =1+2u+p) /DO e_"xﬁ({'_g(x))2 dx < oo. (46)
0 0

O

5. Application

In quantum mechanics; the motion of a particle of masds a field of central force whose
potential isV (r), and total energyr, is described by the Sabdlinger equation for the
wavefunctiony

2
L (47)
21

(h is Planck’s constant divided byz3d. The solution in the spherical polar coordinates
¥ (r, 0, ¢) must satisfy the following conditions:

(@) Y(r,0,¢) =Y (r,0,¢+21)

(b) ¢ isbounded for0< 6 < 7,0<r <occand0< ¢ < 27
(c) ¥ - 0asr - oo

(d) v is finite forr — 0

) [ff 1¥|?r?sing do dp = 1.

The dependence aghand¢ which satisfies the above conditions can be written in the form
Vim (7, 0, $) = Ry (2ar) P"(cos0) €"7 (48)

with |m| <1,1=0,1,2,...anda = /—2uE/h? for negative energy.
For the hydrogen atom (see [17]) with the potentig) equal to—e?/r, we find thatr,,;
is proportional to &/2x'L2*! | (x),n > [ + 1 where

o2 m et
= T\ Ao En = T T 5 A ou
"=wNI2E = h2(2n2)
and the conditiond) amounts to (compare with (46))
o 2n[(n+1+ D13
/ e_xeHZ(L,?fll_l(x))zdx = 2l + I+ DI < 00. (49)
0 (n—D!

Now we can say that the new definition of the Laguerre polynomials, the generalized Laguerre
polynomials (generalized Rodrigues formula) of arbitrary (fractional) orders, enhances the
field of the definition of the solutions for the hydrogen atom. This would add a continuous
spectrum in between the discrete spectrum for the enefgiegurther, this would open the
question of the completeness of the solutions.
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